
DoJSON Documentation
Release 1.1.1

Invenio collaboration

March 15, 2016

Contents

1 About 1

2 Installation 3

3 Documentation 5

4 Testing 7

5 Example 9
5.1 User’s Guide . 9
5.2 API Reference . 11
5.3 Additional Notes . 12

Python Module Index 17

i

ii

CHAPTER 1

About

DoJSON is a simple Pythonic JSON to JSON converter.

1

DoJSON Documentation, Release 1.1.1

2 Chapter 1. About

CHAPTER 2

Installation

DoJSON is on PyPI so all you need is:

$ pip install dojson

3

DoJSON Documentation, Release 1.1.1

4 Chapter 2. Installation

CHAPTER 3

Documentation

Documentation is readable at https://pythonhosted.org/dojson/ or it can be built using Sphinx:

$ pip install dojson[docs]
$ python setup.py build_sphinx

5

https://pythonhosted.org/dojson/

DoJSON Documentation, Release 1.1.1

6 Chapter 3. Documentation

CHAPTER 4

Testing

Running the test suite is as simple as:

$ python setup.py test

7

DoJSON Documentation, Release 1.1.1

8 Chapter 4. Testing

CHAPTER 5

Example

A simple example on how to convert MARCXML to JSON:

from dojson.contrib.marc21.utils import create_record, split_stream
from dojson.contrib.marc21 import marc21
[marc21.do(create_record(data)) for data in split_stream(open('/tmp/data.xml', 'r'))]

5.1 User’s Guide

This part of the documentation will show you how to get started in using DoJSON.

5.1.1 Usage

DoJSON is a simple Pythonic JSON to JSON converter.

The main goal of this package is to help with managing a set of rules for manipulation of Python dictionaries with
focus on JSON serialization. Each rule is associated with regular expression and key. The regular expression has to
match a key in the source mapping and produces a new value that is added to the output mapping under the new key.

Initialization

First create an Overdo object that is holding the index with rules.

>>> import dojson
>>> simple = dojson.Overdo()

Next step is to create rules that will manupulate a source object.

>>> @simple.over('first', '^.*st$')
... def first(self, key, value):
... return value + 1
>>> @simple.over('second', '^.*nd$')
... def second(self, key, value):
... return value + 2

And now we can try to match the source object and produce new data.

>>> data = simple.do({'1st': 1, '2nd': 2})
>>> assert 2 == data['first']
>>> assert 4 == data['second']

9

DoJSON Documentation, Release 1.1.1

Command line interface

Command line interface script is installed as dojson.

The easiest way to get started by applying already registered rule to a JSON data.

{"245__": {"a": "Test title"}}

DoJSON comes with set of rules for processing MARC21 fields.

$ echo '{"245__": {"a": "Test title"}}' | dojson do marc21
{"title_statement": {"title": "Test title"}}

Sometimes one can get input with fields that does not match any rule. To get such a list of fields one can use the
missing command.

$ echo '{"999__": {"a": "Test title"}}' | dojson missing marc21
999__

The usual problem comes with reading different file formats such as XML.

<?xml version='1.0' encoding='UTF-8'?>
<collection xmlns="http://www.loc.gov/MARC21/slim">

<record>
<datafield tag="245" ind1=" " ind2=" ">

<subfield code="a">Test title</subfield>
</datafield>

</record>
</collection>

You can specify regitered loader using -l <NAME> argument. Save the above example as example.xml and check
following command.

$ dojson -i example.xml -l marcxml do marc21
{"title_statement": {"title": "Test title"}}

In similar way it is possible to specify different output serializer (-d).

$ echo '{"title_statement": {"title": "Test title"}}' | \
dojson -d marcxml do marc21

<?xml version='1.0' encoding='UTF-8'?>
<collection xmlns="http://www.loc.gov/MARC21/slim">

<record>
<datafield tag="245" ind1=" " ind2=" ">

<subfield code="a">Test title</subfield>
</datafield>

</record>
</collection>

Command chaining

This makes JSON manipulation even easier. For first example see schema command that accept string argument
containing URL of JSON-Schema that should be added to $schema field.

$ dojson -i example.xml -l marcxml do marc21 \
schema http://example.org/schema/marc21.json

..."schema": "http://example.org/schema/marc21.json"...

Second example shows easy verification that rules produce an identity function.

10 Chapter 5. Example

DoJSON Documentation, Release 1.1.1

$ dojson -l marcxml -d marcxml do marc21 do to_marc21 < example.xml | \
diff - example.xml

Extensibility

New commands, loaders, dumpers, or rules can be provided via entry points.

• dojson.cli commands that return a processor acception an iterator;

• dojson.cli.load functions expecting a stream and returning Python dict or iterator;

• dojson.cli.dump functions expecting a Python object and returning str;

• dojson.cli.rule instances of dojson.overdo.Overdo with loaded rules.

5.2 API Reference

If you are looking for information on a specific function, class or method, this part of the documentation is for you.

5.2.1 API

Do JSON translation.

class dojson.overdo.Index(rules=None, flags=0, branch_size=99)
Index implementation based on build-in Python SRE module.

query(key)
Return data matching the key.

class dojson.overdo.Overdo(bases=None, entry_point_group=None)
Translation index.

build()
Build.

do(blob, ignore_missing=True, exception_handlers=None)
Translate blob values and instantiate new model instance.

Raises MissingRule when no rule matched and ignore_missing is False.

Parameters

• blob – dict-like object on which the matching rules are going to be applied.

• ignore_missing – Set to False if you prefer to raise an exception MissingRule
for the first key that it is not matching any rule.

• exception_handlers – Give custom exception handlers to take care of non-standard
codes that are installation specific.

New in version 1.0.0: ignore_missing allows to specify if the function should raise an exception.

New in version 1.1.0: exception_handlers allows to set custom handlers for non-standard MARC
codes.

missing(blob)
Return keys with missing rules.

5.2. API Reference 11

DoJSON Documentation, Release 1.1.1

over(name, *source_tags)
Register creator rule.

CLI

Define chainable commands for processing loaded data.

dojson.cli.command.process_do = <click.core.Command object>
Process data using given rule.

dojson.cli.command.process_missing = <click.core.Command object>
List fields with missing rules.

dojson.cli.command.process_schema = <click.core.Command object>
Add $schema to an item.

Utility function to manage CLI entry points

dojson.cli.utils.open_entry_point(group_name)
Open entry point.

dojson.cli.utils.with_plugins(group_name)
Register external CLI commands.

Contrib

There are set of rules to manage translation from other formats.

MARC21

MARC standards based on www.loc.gov/marc/.

5.3 Additional Notes

Notes on how to contribute, legal information and changes are here for the interested.

5.3.1 Contributing

Bug reports, feature requests, and other contributions are welcome. If you find a demonstrable problem that is caused
by the code of this library, please:

1. Search for already reported problems.

2. Check if the issue has been fixed or is still reproducible on the latest master branch.

3. Create an issue with a test case.

If you create a feature branch, you can run the tests to ensure everything is operating correctly:

$ python setup.py test

...

====== 31 passed, 23 skipped in 1.37 seconds ======

12 Chapter 5. Example

http://www.loc.gov/marc/
https://github.com/inveniosoftware/dojson/issues

DoJSON Documentation, Release 1.1.1

You can also test your feature branch using Docker:

$ docker-compose build
$ docker-compose run web python setup.py test
$ docker-compose run web python setup.py build_sphinx
$ docker-compose run web pep257 --match-dir='dojson'

5.3.2 Changes

Version 1.1.1 (released 2016-03-15):

Bug fixes

• Adds missing schemas for fields bd388, bd370, bd348, bd884.

Version 1.1.0 (released 2016-03-10):

Incompatible changes

• Moves –load and –dump options to global group.

New features

• Adds schema command to enhance JSON with ‘$schema’ field. (#73)

• Adds rules and schemas for MARC 21 Format for Authority Data. (#7)

• Adds rules and schemas for MARC 21 Format for Holdings Data. (#21)

• Adds support for parsing <leader/> tag in MARCXML.

• Adds new parameter exception_handlers to dojson.Overdo.do and doj-
son.contrib.to_marc21.model.Underdo.do. It can be given to the translation process to deal with non-standard
fields in a custom way (#26).

• Adds new utility map_order function to ease renaming of subfields.

Improved features

• Adds more detailed usage examples. (#117)

• Refactors CLI to allow commands chaining.

• Adds support preserving the order of subfields.

Bug fixes

• Fixes support for Python 3.5.1.

5.3. Additional Notes 13

DoJSON Documentation, Release 1.1.1

Version 1.0.0 (released 2016-01-14):

Incompatible changes

• Removes support for single key matching multiple rules. Please make your rules mutually exclusive!

• controlfields 00x are expected to be the element or a list of multiple elements.

New features

• Adds new keyword argument ignore_missing to Overdo.do method to specify if method should raise Missin-
gRule exception when there is no matching rule for a key.

• Adds new CLI option –strict to the do command that sets the ignore_missing argument to False. (#51)

• MARC XML serialization from to_marc21.

Improved features

• Adds support for Python 3+.

• Uses an OrderedDict to let the external tools working on dict (like json) behave correctly.

• All results from rules using for_each_value decorator are being automatically extended. This is useful for
repeatable MARC21 fields with different indicators. (#53)

• Record are stored in an immutable sorted structure which enables to keep the intended order while offering easy
ways to access, index and manipulate.

• Adds two records to be tested.

• Reorders some of the assertion: expected == actual.

Version 0.4.0 (released 2015-11-18):

New features

• Improves dojson.contrib.marc2.utils.load() to read the input by iterating of the open stream, rather than loading
it all in memory in one go. (#45) (#46)

• Renames OverUndo to Underdo following same name convention as for Overdo.

Bug fixes

• Fixes indicator extraction from value in Underdo model.

Version 0.3.0 (released 2015-11-09):

New features

• Adds experimental rules for converting human readable JSON into a JSON representation of the MARC21
Format.

• Adds do and missing commands for dojson command line interface (see dojson –help for more information).

14 Chapter 5. Example

DoJSON Documentation, Release 1.1.1

Improved features

• Adds missing mapping for the first indicator of field 856.

Version 0.2.0 (released 2015-10-07):

New features

• Adds the posibility to use base DoJSON model so the rules are “inherited” from them.

• Adds new decorator ignore_value that remove the key in the resulting json for None value.

Improved features

• Uses entry points instead of plain imports to load the creator rules.

Bug fixes

• Removes calls to PluginManager consider_setuptools_entrypoints() removed in PyTest 2.8.0.

Version 0.1.1 (released 2015-07-27):

• Sorts and removes duplicated enum values.

• Swaps wrongly defined repeatable and non-repeatable subfields. (#23)

• Addresses issue when allowed indicators where defined as a range. (#22)

Version 0.1.0 (released 2015-07-03):

• Initial public release.

5.3.3 License

DoJSON is free software; you can redistribute it and/or modify it
under the terms of the Revised BSD License quoted below.

Copyright (C) 2015, 2016 CERN.

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

5.3. Additional Notes 15

DoJSON Documentation, Release 1.1.1

* Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

In applying this license, CERN does not waive the privileges and
immunities granted to it by virtue of its status as an
Intergovernmental Organization or submit itself to any jurisdiction.

5.3.4 Authors

DoJSON is developed for the Invenio digital library software.

Contact us at info@invenio-software.org.

Active contributors:

• Jiri Kuncar <jiri.kuncar@cern.ch>

• Esteban J. G. Gabancho <esteban.jose.garcia.gabancho@cern.ch>

• Sami Hiltunen <sami.mikael.hiltunen@cern.ch>

• Tibor Simko <tibor.simko@cern.ch>

16 Chapter 5. Example

http://invenio-software.org
mailto:info@invenio-software.org
mailto:jiri.kuncar@cern.ch
mailto:esteban.jose.garcia.gabancho@cern.ch
mailto:sami.mikael.hiltunen@cern.ch
mailto:tibor.simko@cern.ch

Python Module Index

d
dojson, 9
dojson.cli, 10
dojson.cli.command, 12
dojson.cli.utils, 12
dojson.contrib.marc21, 12
dojson.overdo, 11

17

DoJSON Documentation, Release 1.1.1

18 Python Module Index

Index

B
build() (dojson.overdo.Overdo method), 11

D
do() (dojson.overdo.Overdo method), 11
dojson (module), 9
dojson.cli (module), 10
dojson.cli.command (module), 12
dojson.cli.utils (module), 12
dojson.contrib.marc21 (module), 12
dojson.overdo (module), 11

I
Index (class in dojson.overdo), 11

M
missing() (dojson.overdo.Overdo method), 11

O
open_entry_point() (in module dojson.cli.utils), 12
over() (dojson.overdo.Overdo method), 11
Overdo (class in dojson.overdo), 11

P
process_do (in module dojson.cli.command), 12
process_missing (in module dojson.cli.command), 12
process_schema (in module dojson.cli.command), 12

Q
query() (dojson.overdo.Index method), 11

W
with_plugins() (in module dojson.cli.utils), 12

19

	About
	Installation
	Documentation
	Testing
	Example
	User's Guide
	API Reference
	Additional Notes

	Python Module Index

